Concentration of the Spectral Measure for Large Random Matrices with Stable Entries

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concentration of the Spectral Measure for Large Random Matrices with Stable Entries

We derive concentration inequalities for functions of the empirical measure of large random matrices with infinitely divisible entries and, in particular, stable ones. We also give concentration results for some other functionals of these random matrices, such as the largest eigenvalue or the largest singular value. AMS 2000 Subject Classification: 60E07, 60F10, 15A42, 15A52

متن کامل

Concentration of the Spectral Measure of Large Wishart Matrices with Dependent Entries

We derive concentration inequalities for the spectral measure of large random matrices, allowing for certain forms of dependence. Our main focus is on empirical covariance (Wishart) matrices, but general symmetric random matrices are also considered.

متن کامل

Concentration Inequalities for the Spectral Measure of Random Matrices

where Y ∈ Rp×n is a rectangular p×n matrix with random centered entries, and both n and p ≤ n tend to infinity: typically p = p(n), and p(n)/n tends to some limit. M can be seen as the empirical covariance matrix of a random vector of dimension p sampled n times, each sample being a column of Y . It is common in applications to have a number of variables with a comparable order of magnitude wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2008

ISSN: 1083-6489

DOI: 10.1214/ejp.v13-482